The energy efficiency of conventional, organic, and alternative cropping systems for food and fuel production in the US Midwest

Ilya Gelfand, Sieglinde S. Snapp, and G. Philip Robertson

W. K. Kellogg Biological Station, Department of Crop and Soil Sciences, Great Lakes Bioenergy Research Center, Michigan State University
Background

Corn grain production (million bushels)

- USA Total Production
- Food and Ethanol
- Cattle Feed
- Exports

USDA statistics
www.ers.usda.gov
Energy efficiency

The ratio between the useful output of an energy conversion machine and the input, in energy terms.

\[
\text{Energy Efficiency} = \frac{\text{Energy OUT}}{\text{Energy IN}}
\]
Objectives

• **Optimize** production cost without losing yield and profitability (best management practice).

• **Compare** energy efficiencies of common agricultural practices.

• **Compare** energy efficiencies of different end-uses of agricultural products.
Cropping systems

Conventional Tillage (CT) – Conventional plowing and soil preparation, herbicide and fertilizer application

No-Till (NT) – No plowing or soil preparation, conventional herbicide and fertilizer application

Low Input (LI) – 30% of chemical input with cover crops (clover)

Organic (Org) – Certificated organic production with cover crops (clover)
Management over 17 years

<table>
<thead>
<tr>
<th>System</th>
<th>Soil preparation (plowing, disking)</th>
<th>Planting</th>
<th>Agro-chemicals application</th>
<th>Cultivation</th>
<th>Harvest</th>
<th>Pest control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv. Till</td>
<td>17 10 17</td>
<td>17</td>
<td>25</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>No-Till</td>
<td>- - -</td>
<td>17</td>
<td>41</td>
<td>-</td>
<td>17</td>
<td>25</td>
</tr>
</tbody>
</table>

Number of field operations

Farming cost of no – till is lower despite the cost of agro-chemicals

Conventional Tillage 7.1 GJ ha\(^{-1}\) y\(^{-1}\)

No – Till 4.9 GJ ha\(^{-1}\) y\(^{-1}\)
Approach

- All harvested **grain** is used for **Food**

- All harvested **biomass** (90% total) used for **biofuel production**

Net Energy balance \((\text{GJ ha}^{-1} \text{y}^{-1})\) = Energy out – Energy in

Energy OUT: Energy content of harvested grain or biofuel

Energy IN: Energy required for management + Energy for agrochemical production
Results (grain)

Cropping systems

GJ ha\(^{-1}\) y\(^{-1}\)

<table>
<thead>
<tr>
<th>System</th>
<th>Conventional tillage</th>
<th>No-till</th>
<th>Low input</th>
<th>Organic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>11</td>
</tr>
</tbody>
</table>
Results (biofuel)

![Bar chart showing energy efficiency for different cropping systems.]

- **GJ ha⁻¹ y⁻¹**
- **Farming**
- **Energy production**

Cropping systems
- Conventional tillage
- No-till
- Low input
- Organic

Energy Efficiency:
- Conventional tillage: 7 GJ ha⁻¹ y⁻¹
- No-till: 11 GJ ha⁻¹ y⁻¹
- Low input: 9 GJ ha⁻¹ y⁻¹
- Organic: 7 GJ ha⁻¹ y⁻¹
Products End-Use and Energy Efficiency

Conversion efficiency:

- 9 kg cattle food → 1 kg of beef
- 1 kg biomass → 0.36 L Ethanol
- 1 kg soybean → 0.17 L Biodiesel

Therefore,

use of grain for cattle feed or biofuel decreases energy efficiency of agricultural production
Biofuels vs. Food

Production of grain for food is 30 – 40% more efficient than production of whole plant, as cellulosic biomass for biofuels.

However, how much of the corn produced in the U.S. is going to food?

<table>
<thead>
<tr>
<th></th>
<th>Food</th>
<th>Fuel</th>
<th>Feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg x 10^6</td>
<td>% of total</td>
<td>Mg x 10^6</td>
<td>% of total</td>
</tr>
<tr>
<td>32</td>
<td>9</td>
<td>109</td>
<td>33</td>
</tr>
</tbody>
</table>

USDA statistics for 2009
www.ers.usda.gov
Use of hybrid systems:

1. Distillers' Grain (post ethanol production), used for cattle feed

OR

2. Grain used for food and stover used for ethanol production

Increases energy efficiencies of cropping systems between 20% to 50%.
Conclusions

• No-till system is the most energy efficient system (SW Michigan conditions).

• The end-use of agricultural products is very important in estimation of energy efficiency.

• Use of corn grain (biomass) for cattle feed (biofuels feedstock) is less energy efficient than use of corn grain for human food.
Rotational Yields (grain)

<table>
<thead>
<tr>
<th></th>
<th>Corn</th>
<th>Wheat</th>
<th>Soybean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg ha$^{-1}$ y$^{-1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>2.4 (0.2)</td>
<td>0.8 (0.0)</td>
<td>0.8 (0.0)</td>
</tr>
<tr>
<td>NT</td>
<td>2.6 (0.1)</td>
<td>0.9 (0.0)</td>
<td>0.9 (0.0)</td>
</tr>
<tr>
<td>LI</td>
<td>1.9 (0.1)</td>
<td>1.1 (0.0)</td>
<td>0.8 (0.0)</td>
</tr>
<tr>
<td>Org</td>
<td>1.4 (0.8)</td>
<td>0.7 (0.0)</td>
<td>0.7 (0.0)</td>
</tr>
</tbody>
</table>
Rotational Yields (biofuels)

<table>
<thead>
<tr>
<th></th>
<th>Biomass yield for cellulosic ethanol production at 90% harvest efficiency</th>
<th>Biomass yield for biodiesel production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mg ha$^{-1}$y$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>6.2 (0.1)</td>
<td>0.8 (0.0)</td>
</tr>
<tr>
<td>NT</td>
<td>6.5 (0.1)</td>
<td>0.9 (0.0)</td>
</tr>
<tr>
<td>LI</td>
<td>6.1 (0.0)</td>
<td>0.8 (0.0)</td>
</tr>
<tr>
<td>Org</td>
<td>4.5 (0.1)</td>
<td>0.7 (0.0)</td>
</tr>
</tbody>
</table>
management over 17 years of study

<table>
<thead>
<tr>
<th>System</th>
<th>Soil preparation (plowing, disking, etc.)</th>
<th>Planting</th>
<th>Fertilization*</th>
<th>Cultivation</th>
<th>Harvest</th>
<th>Pest control</th>
<th>Mowing</th>
<th>Balining</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>17 10 17</td>
<td>17</td>
<td>25</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>![V]</td>
<td>![∧]</td>
<td>![V]</td>
<td>![∧]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT</td>
<td>- - -</td>
<td>17</td>
<td>41</td>
<td>-</td>
<td>17</td>
<td>25</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

* Fertilization including all agro-chemicals

Farming cost of no – till is lower despite the cost of agro-chemicals

- Conventional Tillage 7.1 GJ ha\(^{-1}\) y\(^{-1}\)
- No – Till 4.9 GJ ha\(^{-1}\) y\(^{-1}\)