Food and Fuel: Land Efficient Animal Feeds Enable Large Energy & Environmental Benefits

Bryan Bals, Bruce Dale, Seungdo Kim, Pragnya Eranki
Biomass Conversion Research Laboratory
Michigan State University
Presented at the Bioeconomy and Global Climate Change Symposium
East Lansing, MI
April 27, 2010
“[I]t's a crime against humanity to convert agricultural productive soil into soil... which will be burned into biofuel.”

Jean Ziegler, UN Special Rapporteur, 2007
Indirect land use change - are biofuels no longer sustainable?

<table>
<thead>
<tr>
<th>Source of fuel</th>
<th>Gasoline</th>
<th>Biomass ethanol</th>
<th>Ethanol + indirect land use change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedstock</td>
<td>4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Refining fuel</td>
<td>15</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Vehicle operation (burning fuel)</td>
<td>72</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>Feedstock carbon uptake from atmosphere (GREET)</td>
<td>0</td>
<td>-62</td>
<td>-62</td>
</tr>
<tr>
<td>Land-use change</td>
<td>-</td>
<td>-</td>
<td>111</td>
</tr>
<tr>
<td>Total GHGs</td>
<td>92</td>
<td>27</td>
<td>138</td>
</tr>
<tr>
<td>% Change in net GHGs versus gasoline</td>
<td>-</td>
<td>-70%</td>
<td>50%</td>
</tr>
</tbody>
</table>

All values are in g CO2 eq / km driven

Not asking the right questions

- We cannot force bioenergy into the current agricultural landscape and expect it to work
 - Agriculture has changed before; it can change again

- We must examine the actual uses of land rather than relying on intuitive “gut reactions”
 - Most agricultural land is used for animal feed, **NOT** direct human consumption
 - Cropland is currently not used efficiently; we actually have more than enough land

- Solution: new technologies for better animal feed and improved productivity of land
Leaf Protein Concentrates

- Leaf protein readily abundant, but trapped with indigestible fibrous material
- Solution: separate protein from fiber
 - Leaf protein replaces soy meal & is more land efficient
 - Fiber can be used for ethanol production
- Successfully produced at commercial scales

<table>
<thead>
<tr>
<th>Crop</th>
<th>Average Yield (tons/acre/year)</th>
<th>Protein Content (dry mass %)</th>
<th>Protein Produced (tons/acre/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switchgrass</td>
<td>5.0 - 10</td>
<td>5 - 10%</td>
<td>0.25 - 1.0</td>
</tr>
<tr>
<td>Soybeans</td>
<td>1.2 - 1.4</td>
<td>40%</td>
<td>0.5 - 0.6</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>3.7 - 5.0</td>
<td>20 - 25%</td>
<td>0.8 - 1.2</td>
</tr>
<tr>
<td>Mixed forages</td>
<td>3.3 - 4.6</td>
<td>15 - 25%</td>
<td>0.5 - 1.2</td>
</tr>
<tr>
<td>Double crop</td>
<td>1.0 - 2.5</td>
<td>10 - 20%</td>
<td>0.1 - 0.5</td>
</tr>
</tbody>
</table>
AFEX-Treated Fibrous Feeds

- Problem: Energy in the form of cellulose
 - Early Forages - low yields, expensive
 - Late Forages - indigestible, low nitrogen
- Partial solution: Gaseous ammoniation
 - Only modest improvements in digestibility seen
 - Increases nitrogen content
- AFEX - Ammonia Fiber Expansion
 - A leading pretreatment for biofuels via sugar platform
 - Better fiber disruption than conventional ammoniation for forages—better animal feed
Total Digestible Nutrients, Net Energy for Lactation, and Crude Protein

<table>
<thead>
<tr>
<th></th>
<th>TDN % DM</th>
<th>NEL Mcal/lb</th>
<th>CP % DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn grain</td>
<td>88.7</td>
<td>0.91</td>
<td>9.4</td>
</tr>
<tr>
<td>Corn silage</td>
<td>68.8</td>
<td>0.66</td>
<td>8.8</td>
</tr>
<tr>
<td>Orchardgrass hay</td>
<td>63.1</td>
<td>0.62</td>
<td>18.1</td>
</tr>
<tr>
<td>Alfalfa hay</td>
<td>58.9</td>
<td>0.58</td>
<td>20.2</td>
</tr>
<tr>
<td>AFEX Corn Stover</td>
<td>75.6</td>
<td>0.79</td>
<td>17.2</td>
</tr>
<tr>
<td>AFEX Switchgrass - late</td>
<td>63.0</td>
<td>0.67</td>
<td>14.6</td>
</tr>
</tbody>
</table>

All values except AFEX materials obtained from *Nutrient Requirements of Dairy Cattle*, NRC 2001
Double Cropping

- Grow crops over winter and spring on corn or soy land while still growing corn/soy
 - Does **NOT** require new land
 - Increases corn stover than can be harvested
 - Can be used for fuel, protein, forage, etc

Holt, MI: May 5, 2005
Determining the Technical Potential

- Take all current cropland dedicated to animal feed, feed exports, ethanol production, and idle land and rethink how we use it
 - Approx. 70% of US cropland (114 million ha)
- Rebuild while meeting current animal feed and export requirements
 - Energy, protein, and fiber
 - Ruminants and non-ruminants
- Solve cropland use & end-use to maximize ethanol production/minimize GHG emissions
<table>
<thead>
<tr>
<th>Crop</th>
<th>Land</th>
<th>Crop</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>31.4</td>
<td>Alfalfa</td>
<td>8.2</td>
</tr>
<tr>
<td>Domestic feed</td>
<td>16.4</td>
<td>Other haylage</td>
<td>16.7</td>
</tr>
<tr>
<td>Ethanol</td>
<td>8.3</td>
<td>Cropland for pasture</td>
<td>14.5</td>
</tr>
<tr>
<td>Export</td>
<td>6.7</td>
<td>Reserved/Idle land</td>
<td>15.4</td>
</tr>
<tr>
<td>Soybean</td>
<td>25.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic feed</td>
<td>15.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Export</td>
<td>9.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failed Cropland</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total row crops</td>
<td>59.5</td>
<td>Total forage land</td>
<td>54.7</td>
</tr>
<tr>
<td>Total land</td>
<td>114.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Environmental considerations

- On-farm emissions: DAYCENT modeling
 - Average over 60 years
 - 11 different locations throughout Midwest
- Transportation emissions to and from refineries
- Refining emissions
 - GREET model - corn ethanol
 - NREL/Dartmouth model - cellulosic ethanol
 - In-house estimates - protein, AFEX feeds
- End-use - Assumed to burn cleanly
 - Ethanol - displaces gasoline on energy basis
 - Lignin - displaces electricity using current US fuel makeup
Limitations of the study

- Does not consider economics
 - Farmers may not choose most land efficient options if there is better economic in another approach
- Does not consider logistics
 - Not all idle land may be available
- Does not consider cropland for human consumption, forest land, or grassland pasture and rangeland
 - Additional improvements in biofuel production and GHG reductions are possible
Current vs Future Land Use

- Using the same land, total biomass production increases by 2.5 times
- Displaces 50% of gasoline use and 5% of US electricity use
Current Land Use

End Use
- Ruminant Feed (222 Tg)
- Export (93 Tg)
- Ethanol Fuel (27 Tg) 825 EJ
- CO₂ (29 Tg)

Crops
- Protein Meal (39 Tg)
- Vegetable Oil (9 Tg)
- Protein Forage (195 Tg)

Farm Land
- Grassland (31.2 million ha)
- Alfalfa (8.2 million ha)
- Idle Land (18.4 million ha)
- Row Crops (56.5 million ha)
- Oil Seeds (80 Tg)
- Grain (315 Tg)
Why so different?

- **Idle land:** ~40 million acres
 - Convert to switchgrass at ~500 gal/acre
 - ~20 billion gallons/yr
- **Grass hay and pasture:** ~75 million acres
 - Average yield is 3 times smaller than switchgrass (assumed to be 6.2 ton/acre/yr)
 - Average yield is slightly less than cover crop yield
 - Eliminated land leads to ~35 billion gallons/yr
- **Corn stover removal:** ~100 million acres
 - Does not include ~25% going to animal feed
 - ~15 billion gallons/yr
- **Corn grain:** ~20 million acre increase
 - Not as much needed due to stover/DGS as feed
 - Not as much soy needed due to LPC production
 - Grain ethanol is ~20 billion gallons/yr
Maximum Ethanol Production Tracks with Maximum CO2 Reduction

Very little difference in performance over a range of assumptions
Greenhouse Gas Emissions

Total US Greenhouse Gases (2009): 6950 Tg

<table>
<thead>
<tr>
<th>Category</th>
<th>Displaced amount</th>
<th>GHG Emissions (Tg CO2-eq/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Farm GHG</td>
<td>-</td>
<td>95.73</td>
</tr>
<tr>
<td>Transportation GHG</td>
<td>-</td>
<td>27.99</td>
</tr>
<tr>
<td>Processing GHG</td>
<td>-</td>
<td>165.61</td>
</tr>
<tr>
<td>Ethanol Transportation GHG</td>
<td>-</td>
<td>11.71</td>
</tr>
<tr>
<td>Gasoline displaced</td>
<td>399.8 GL</td>
<td>-758.9</td>
</tr>
<tr>
<td>Electricity Displaced</td>
<td>216.7 TW*hr</td>
<td>-163.4</td>
</tr>
<tr>
<td>Current GHG Emissions</td>
<td>48.9 Tg/yr</td>
<td>-48.9</td>
</tr>
<tr>
<td>Net GHG Emissions</td>
<td>-</td>
<td>-670.8</td>
</tr>
</tbody>
</table>
GHG Emission Contributions

- AFEX-treated feeds and LPCs consume large amounts of fossil energy
 - Solution: co-locate with ethanol facility
- Slightly higher on-farm GHG emissions
 - More intensive land use
 - Low on-farm GHG emissions for switchgrass
 - No difference for double crops
 - Little difference for length of corn rotation
- Fossil fuel reduction is dominant GHG driver
Other Sustainability Issues

- Net soil organic carbon increases in this process
 - Great improvements with switchgrass over pasture/grass hay
 - SOC doubles when double crops are included
- Nitrate leaching increases ~3-fold
 - Longer corn rotations
 - 5-fold higher emissions from switchgrass than grass hay
 - May not occur for native prairies or miscanthus
Ways to Reduce Nitrate Leaching

- Much more double cropping
- Improve plant fertilizer use efficiency
- Precision agriculture
- Controlled release fertilizers
- Dietary changes
- Better landscape design
 - Deep rooted perennials in row crop systems
Sensitivity Analysis

Animal feed requirements and switchgrass energy crop yields dominate

<table>
<thead>
<tr>
<th>EtOH Change</th>
<th>Feed Consumption</th>
<th>CBC Yields</th>
<th>Exports</th>
<th>Cover Crop Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG Change</td>
<td>Feed Consumption</td>
<td>CBC Yields</td>
<td>Exports</td>
<td>Cover Crop Land</td>
</tr>
</tbody>
</table>

Percent Change in Ethanol Production or GHG Reductions

-30% -20% -10% 0% 10% 20% 30%

25% Increase
25% Decrease
Sensitivity Analysis

High double-cropping desired
Further Improvements

- Can we replace all US gasoline?
 - Lift constraint on AFEX treated feeds
 - Increase energy crop yields to 12 ton/acre
 - Decrease exports by 50%
 - Increase row crop yields by 10%
 - Increase cover crops to 67% of rotation land
 - End result: 102% of US gasoline use

- Can we replace all US petroleum imports?
 - Lift constraint on AFEX treated feeds
 - Increase energy crop yields to 15 ton/acre
 - Eliminate exports
 - Decrease meat consumption by 20%
 - Increase row crop yields by 10%
 - Cover crops on all land
 - End result: 102% of total imports
Conclusions

- Large-scale biofuel economy is possible through intensely managed lands
 - 50% of US gasoline consumption
 - 10% of greenhouse gas emissions
- Double crops, animal feed requirements, and energy crop yields have the greatest impact on bioenergy production and environmental benefits
- Must study & implement ways to reduce nitrate leaching
- Great opportunity for productive collaboration between farmers, biofuel producers, government agencies & environmental groups
Acknowledgements

- Funding provided by:
 - Michigan Agricultural Experiment Station
 - Great Lakes Bioenergy Research Center
 - General Motors Corporation

- Thanks to:
 - Reimagining Agriculture Group
 - Thomas Black
Our BCRL Team